Simon Schmidt joint work with David Roberson

University of Copenhagen

February 7, 2022

Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101030346

#### Colored graphs

- Consider a finite graph G=(V,E) without multiple edges, i.e. V finite set and  $E\subseteq V\times V$
- A colored graph is a graph G along with a coloring function  $c:V\cup E\to S$  for some set S.

### Colored graphs

- Consider a finite graph G=(V,E) without multiple edges, i.e. V finite set and  $E\subseteq V\times V$
- A colored graph is a graph G along with a coloring function  $c:V\cup E\to S$  for some set S.



#### Colored graphs

- ullet Consider a finite graph G=(V,E) without multiple edges, i.e. V finite set and  $E\subseteq V imes V$
- A colored graph is a graph G along with a coloring function  $c:V\cup E\to S$  for some set S.



- Adjacency matrices  $A_{G_c} \in M_n(\{0,1\})$ , where  $(A_{G_c})_{ij} = \begin{cases} 1 \text{ if } (i,j) \in E_c \\ 0 \text{ otherwise} \end{cases}$
- A graph automorphism is a bijection  $\sigma: V \to V$  such that  $(i,j) \in E_c$  if and only if  $(\sigma(i), \sigma(j)) \in E_c$ , where additionally  $c(i) = c(\sigma(i))$ .
- Automorphism group  $\operatorname{Aut}(G) = \{ \sigma \in S_n \, | \, \sigma A_{G_c} = A_{G_c} \sigma \text{ and } \sigma_{ij} = 0 \text{ if } c(i) \neq c(j) \}$

### The quantum symmetric group

#### Definition (Wang, 1998)

The quantum symmetric group  $S_n^+ = (C(S_n^+), u)$  is the compact matrix quantum group, where

$$C(S_n^+) := C^*(u_{ij}, 1 \leq i, j \leq n \,|\, u_{ij} = u_{ij}^* = u_{ij}^2, \, \sum_k u_{ik} = \sum_k u_{ki} = 1).$$

### The quantum symmetric group

#### Definition (Wang, 1998)

The quantum symmetric group  $S_n^+ = (C(S_n^+), u)$  is the compact matrix quantum group, where

$$C(S_n^+) := C^*(u_{ij}, \, 1 \leq i, j \leq n \, | \, u_{ij} = u_{ij}^* = u_{ij}^2, \, \sum_k u_{ik} = \sum_k u_{ki} = 1).$$

- The  $C^*$ -algebra  $C(S_n^+)$  is commutative for  $n \leq 3$  and non-commutative for  $n \geq 4$
- For n=4, the  $C^*$ -algebra  $C(S_4^+)$  is non-commutative because of the surjective \*-homomorphism

$$\varphi: C(S_4^+) \to C^*(p, q, 1 | p = p^* = p^2, q = q^* = q^2),$$

$$u \mapsto \begin{pmatrix} p & 1 - p & 0 & 0\\ 1 - p & p & 0 & 0\\ 0 & 0 & q & 1 - q\\ 0 & 0 & 1 - q & q \end{pmatrix}.$$

#### Definition

Let G = (V, E) be a colored graph. The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where C(Qut(G)) is the universal  $C^*$ -algebra with generators  $u_{ij}$  fulfilling

$$u_{ij}=u_{ij}^*=u_{ij}^2, \qquad \qquad i,j\in V(G)$$
  $\sum_k u_{ik}=\sum_k u_{ki}=1, \qquad \qquad i\in V(G)$   $u_{ij}=0, \qquad \qquad \text{for all } i,j\in V(G) \text{ with } c(i)\neq c(j)$   $uA_{G_c}=A_{G_c}u$  for all edge colors  $c$ .

Here  $uA_{G_c} = A_{G_c}u$  is nothing but  $\sum_k u_{ik}(A_{G_c})_{kj} = \sum_k (A_{G_c})_{ik}u_{kj}$ .

#### Definition

Let G = (V, E) be a colored graph. The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where C(Qut(G)) is the universal  $C^*$ -algebra with generators  $u_{ij}$  fulfilling

$$egin{aligned} u_{ij} &= u_{ij}^* = u_{ij}^2, & i,j \in V(G) \ \sum_k u_{ik} &= \sum_k u_{ki} = 1, & i \in V(G) \ u_{ij} &= 0, & \text{for all } i,j \in V(G) \text{ with } c(i) \neq c(j) \ uA_{G_c} &= A_{G_c} u & \text{for all edge colors } c. \end{aligned}$$

Here  $uA_{G_c} = A_{G_c}u$  is nothing but  $\sum_k u_{ik}(A_{G_c})_{kj} = \sum_k (A_{G_c})_{ik}u_{kj}$ .

 For uncolored graphs, quantum automorphism groups were defined by Banica in 2005.

#### Definition

Let G = (V, E) be a colored graph. The quantum automorphism group Qut(G) is the compact matrix quantum group (C(Qut(G)), u), where C(Qut(G)) is the universal  $C^*$ -algebra with generators  $u_{ij}$  fulfilling

$$egin{aligned} u_{ij} &= u_{ij}^* &= u_{ij}^*, & i,j \in V(G) \ \sum_k u_{ik} &= \sum_k u_{ki} = 1, & i \in V(G) \ u_{ij} &= 0, & \text{for all } i,j \in V(G) \text{ with } c(i) \neq c(j) \ u_{A_{G_c}} &= A_{G_c} u & \text{for all edge colors } c. \end{aligned}$$

Here  $uA_{G_c} = A_{G_c}u$  is nothing but  $\sum_k u_{ik}(A_{G_c})_{kj} = \sum_k (A_{G_c})_{ik}u_{kj}$ .

- For uncolored graphs, quantum automorphism groups were defined by Banica in 2005.
- The graph G has no quantum symmetry if C(Qut(G)) is commutative, or equivalently C(Qut(G)) = C(Aut(G)). Otherwise, the graph G does have quantum symmetry.

### Linear constraint systems and their solution groups

#### **Definition**

Let  $M \in \mathbb{F}_2^{m \times n}$  and  $b \in \mathbb{F}_2^m$  with  $b \neq 0$ . The solution group  $\Gamma(M,b)$  of the linear system Mx = b is the group generated by elements  $x_i$  for  $i \in [n]$  and an element J satisfying the following relations:

- (1)  $x_i^2 = 1$  for all  $i \in [n]$ ;
- (2)  $x_i x_j = x_j x_i$  if there exists  $k \in [m]$  s.t.  $M_{ki} = M_{kj} = 1$ ;
- (3)  $\prod_{i:M_{ki}=1} x_i = J^{b_k}$  for all  $k \in [m]$ ;
- (4)  $J^2 = 1$ ;
- (5)  $x_i J = J x_i$  for all  $i \in [n]$ .

### Linear constraint systems and their solution groups

#### **Definition**

Let  $M \in \mathbb{F}_2^{m \times n}$  and  $b \in \mathbb{F}_2^m$  with  $b \neq 0$ . The solution group  $\Gamma(M,b)$  of the linear system Mx = b is the group generated by elements  $x_i$  for  $i \in [n]$  and an element J satisfying the following relations:

- (1)  $x_i^2 = 1$  for all  $i \in [n]$ ;
- (2)  $x_i x_j = x_j x_i$  if there exists  $k \in [m]$  s.t.  $M_{ki} = M_{kj} = 1$ ;
- (3)  $\prod_{i:M_{ki}=1} x_i = J^{b_k}$  for all  $k \in [m]$ ;
- (4)  $J^2 = 1$ ;
- (5)  $x_i J = J x_i$  for all  $i \in [n]$ .

For b=0:  $\Gamma=\Gamma(M,0)$  is the homogeneous solution group of the system Mx=0, where we add the relation J=1.

### Linear constraint systems and their solution groups

#### Definition

Let  $M \in \mathbb{F}_2^{m \times n}$  and  $b \in \mathbb{F}_2^m$  with  $b \neq 0$ . The solution group  $\Gamma(M,b)$  of the linear system Mx = b is the group generated by elements  $x_i$  for  $i \in [n]$  and an element J satisfying the following relations:

- (1)  $x_i^2 = 1$  for all  $i \in [n]$ ;
- (2)  $x_i x_j = x_j x_i$  if there exists  $k \in [m]$  s.t.  $M_{ki} = M_{kj} = 1$ ;
- (3)  $\prod_{i:M_{ki}=1} x_i = J^{b_k}$  for all  $k \in [m]$ ;
- (4)  $J^2 = 1$ ;
- (5)  $x_i J = J x_i$  for all  $i \in [n]$ .

For b=0:  $\Gamma=\Gamma(M,0)$  is the homogeneous solution group of the system Mx=0, where we add the relation J=1.

$$C^*(\Gamma) = C^*\left(x_i \mid x_i = x_i^*, x_i^2 = 1, \prod_{i:M_{ki}=1} x_i = 1, x_i x_j = x_j x_i \text{ if } M_{ki} = M_{kj} = 1 \text{ for some } k\right)$$

### LCS from connected graphs

Let H be a connected graph with vertex set [m] and label the edges  $1, \ldots, n := |E(H)|$ . Let  $M_H \in \mathbb{F}_2^{m \times n}$  be the matrix, where

$$(M_H)_{ki} =$$

$$\begin{cases} 1 & \text{if } k \in V(H) \text{ is incident to } i \in E(H); \\ 0 & \text{o.w.} \end{cases}$$

### LCS from connected graphs

Let H be a connected graph with vertex set [m] and label the edges  $1, \ldots, n := |E(H)|$ . Let  $M_H \in \mathbb{F}_2^{m \times n}$  be the matrix, where

$$(M_H)_{ki} = egin{cases} 1 & ext{if } k \in V(H) ext{ is incident to } i \in E(H); \ 0 & ext{o.w.} \end{cases}$$

#### Example

Graph  $K_{3,4}$ 



### LCS from connected graphs

Let H be a connected graph with vertex set [m] and label the edges  $1, \ldots, n := |E(H)|$ . Let  $M_H \in \mathbb{F}_2^{m \times n}$  be the matrix, where

$$(M_H)_{ki} = egin{cases} 1 & ext{if } k \in V(H) ext{ is incident to } i \in E(H); \ 0 & ext{o.w.} \end{cases}$$

#### Example

### Graph $K_{3.4}$



#### Linear constraint system

$$x_1 + x_2 + x_3 + x_4 = 0,$$
  $x_1 + x_5 + x_9 = 0,$   
 $x_5 + x_6 + x_7 + x_8 = 0,$   $x_2 + x_6 + x_{10} = 0,$   
 $x_9 + x_{10} + x_{11} + x_{12} = 0,$   $x_3 + x_7 + x_{11} = 0,$   
 $x_4 + x_8 + x_{12} = 0.$ 

Let H be a connected graph,  $M_H \in \mathbb{F}_2^{m \times n}$  as before. Define the colored graph  $G := G(M_H, 0)$  as follows. Let  $S_k = \{i \in [n]; (M_H)_{ki} = 1\}$ .

(1) Vertices:  $\left\{(k,\alpha): k \in [m], \alpha: S_k \to \{\pm 1\}, \prod_{i \in S_k} \alpha_i = 1\right\}$ . The color of a vertex  $v = (k,\alpha)$  is k.

Let H be a connected graph,  $M_H \in \mathbb{F}_2^{m \times n}$  as before. Define the colored graph  $G := G(M_H, 0)$  as follows. Let  $S_k = \{i \in [n]; (M_H)_{ki} = 1\}$ .

- (1) Vertices:  $\left\{ (k,\alpha) : k \in [m], \alpha : S_k \to \{\pm 1\}, \prod_{i \in S_k} \alpha_i = 1 \right\}$ . The color of a vertex  $v = (k,\alpha)$  is k.
- (2) Edges:
  - $(k, \alpha)$  and  $(k, \beta)$  are connected and the edge has color  $\alpha \Delta \beta$ , where  $(\alpha \Delta \beta)_i = \alpha_i \beta_i$

Let H be a connected graph,  $M_H \in \mathbb{F}_2^{m \times n}$  as before. Define the colored graph  $G := G(M_H, 0)$  as follows. Let  $S_k = \{i \in [n]; (M_H)_{ki} = 1\}$ .

- (1) Vertices:  $\left\{ (k,\alpha) : k \in [m], \alpha : S_k \to \{\pm 1\}, \prod_{i \in S_k} \alpha_i = 1 \right\}$ . The color of a vertex  $v = (k,\alpha)$  is k.
- (2) Edges:
  - $(k, \alpha)$  and  $(k, \beta)$  are connected and the edge has color  $\alpha \Delta \beta$ , where  $(\alpha \Delta \beta)_i = \alpha_i \beta_i$
  - ▶ If  $k \neq l$ , then  $(k, \alpha)$ ,  $(l, \beta)$  are connected if there exists i such that  $M_{ki} = M_{li} = 1$  and furthermore  $\alpha_i \neq \beta_i$ . The color of those edges is -1.

Let H be a connected graph,  $M_H \in \mathbb{F}_2^{m \times n}$  as before. Define the colored graph  $G := G(M_H, 0)$  as follows. Let  $S_k = \{i \in [n]; (M_H)_{ki} = 1\}$ .

- (1) Vertices:  $\left\{ (k,\alpha) : k \in [m], \alpha : S_k \to \{\pm 1\}, \prod_{i \in S_k} \alpha_i = 1 \right\}$ . The color of a vertex  $v = (k,\alpha)$  is k.
- (2) Edges:
  - $(k, \alpha)$  and  $(k, \beta)$  are connected and the edge has color  $\alpha \Delta \beta$ , where  $(\alpha \Delta \beta)_i = \alpha_i \beta_i$
  - If  $k \neq l$ , then  $(k, \alpha)$ ,  $(l, \beta)$  are connected if there exists i such that  $M_{ki} = M_{li} = 1$  and furthermore  $\alpha_i \neq \beta_i$ . The color of those edges is -1.

#### Example

For  $H = K_{3,4}$ :

• the graph has  $3 \times 8 + 4 \times 4 = 40$  vertices and seven vertex-colors,

Let H be a connected graph,  $M_H \in \mathbb{F}_2^{m \times n}$  as before. Define the colored graph  $G := G(M_H, 0)$  as follows. Let  $S_k = \{i \in [n]; (M_H)_{ki} = 1\}$ .

- (1) Vertices:  $\left\{ (k,\alpha) : k \in [m], \alpha : S_k \to \{\pm 1\}, \prod_{i \in S_k} \alpha_i = 1 \right\}$ . The color of a vertex  $v = (k,\alpha)$  is k.
- (2) Edges:
  - $(k, \alpha)$  and  $(k, \beta)$  are connected and the edge has color  $\alpha \Delta \beta$ , where  $(\alpha \Delta \beta)_i = \alpha_i \beta_i$
  - If  $k \neq l$ , then  $(k, \alpha)$ ,  $(l, \beta)$  are connected if there exists i such that  $M_{ki} = M_{li} = 1$  and furthermore  $\alpha_i \neq \beta_i$ . The color of those edges is -1.

#### Example

For  $H = K_{3,4}$ :

- the graph has  $3 \times 8 + 4 \times 4 = 40$  vertices and seven vertex-colors,
- edges between vertices associated to the same equation may have different colors,
- ullet edges between vertices associated to different equations always have color -1.

#### Theorem (Roberson, S. 2021)

Let  $M \in \mathbb{F}_2^{m \times n}$ . Set G = G(M,0) and  $\Gamma = \Gamma(M,0)$ . Then there exists a \*-isomorphism  $\varphi : C^*(\Gamma) \to C(Qut(G))$  such that  $\Delta_G \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{\Gamma}$ .

#### Theorem (Roberson, S. 2021)

Let  $M \in \mathbb{F}_2^{m \times n}$ . Set G = G(M,0) and  $\Gamma = \Gamma(M,0)$ . Then there exists a \*-isomorphism  $\varphi : C^*(\Gamma) \to C(Qut(G))$  such that  $\Delta_G \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{\Gamma}$ .

#### Idea of the proof

• The uncolored version of G is one of the quantum isomorphic graphs  $G_1$ ,  $G_2$  constructed by Aterias et al.

#### Theorem (Roberson, S. 2021)

Let  $M \in \mathbb{F}_2^{m \times n}$ . Set G = G(M,0) and  $\Gamma = \Gamma(M,0)$ . Then there exists a \*-isomorphism  $\varphi : C^*(\Gamma) \to C(Qut(G))$  such that  $\Delta_G \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_\Gamma$ .

#### Idea of the proof

- The uncolored version of G is one of the quantum isomorphic graphs  $G_1$ ,  $G_2$  constructed by Aterias et al.
- The quantum isomorphism between  $G_1$  and  $G_2$  corresponds to a representation of the solution group of Mx = b,  $b \neq 0$  and J = -1.
- One similarly gets a quantum automorphism of  $G_1$ , here J=1.

#### Theorem (Roberson, S. 2021)

Let  $M \in \mathbb{F}_2^{m \times n}$ . Set G = G(M,0) and  $\Gamma = \Gamma(M,0)$ . Then there exists a \*-isomorphism  $\varphi : C^*(\Gamma) \to C(Qut(G))$  such that  $\Delta_G \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{\Gamma}$ .

#### Idea of the proof

- The uncolored version of G is one of the quantum isomorphic graphs  $G_1$ ,  $G_2$  constructed by Aterias et al.
- The quantum isomorphism between  $G_1$  and  $G_2$  corresponds to a representation of the solution group of Mx = b,  $b \neq 0$  and J = -1.
- One similarly gets a quantum automorphism of  $G_1$ , here J=1.
- More concrete: We have  $u_{(k,\alpha),(k,\beta)} = p_{(k,\alpha\Delta\beta)}$ , where  $p_{(k,\delta)} = \prod_{i \in S_k} \frac{1}{2} (1 + \delta_i x_i)$ ,  $u_{(k,\alpha),(l,\beta)} = 0$  for  $k \neq l$

#### Theorem (Roberson, S. 2021)

Let  $M \in \mathbb{F}_2^{m \times n}$ . Set G = G(M,0) and  $\Gamma = \Gamma(M,0)$ . Then there exists a \*-isomorphism  $\varphi : C^*(\Gamma) \to C(Qut(G))$  such that  $\Delta_G \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{\Gamma}$ .

#### Idea of the proof

- The uncolored version of G is one of the quantum isomorphic graphs  $G_1$ ,  $G_2$  constructed by Aterias et al.
- The quantum isomorphism between  $G_1$  and  $G_2$  corresponds to a representation of the solution group of Mx = b,  $b \neq 0$  and J = -1.
- One similarly gets a quantum automorphism of  $G_1$ , here J=1.
- More concrete: We have  $u_{(k,\alpha),(k,\beta)} = p_{(k,\alpha\Delta\beta)}$ , where  $p_{(k,\delta)} = \prod_{i \in S_k} \frac{1}{2} (1 + \delta_i x_i)$ ,  $u_{(k,\alpha),(l,\beta)} = 0$  for  $k \neq l$
- By coloring the graph in this specific way, we make sure that those are the only quantum automorphisms of the graph

Let G be a vertex – and edge-colored graph.

(1) Attach a path of length  $n_c \in \mathbb{N}_0$  to every vertex colored c, where  $n_{c_1} \neq n_{c_2}$  for colors  $c_1 \neq c_2$  and then decolor the vertices of the graph.

Let G be a vertex – and edge-colored graph.

- (1) Attach a path of length  $n_c \in \mathbb{N}_0$  to every vertex colored c, where  $n_{c_1} \neq n_{c_2}$  for colors  $c_1 \neq c_2$  and then decolor the vertices of the graph.
- (2) We choose one of the edge-colors of *G* and let the edges in the paths all have this edge-color.

We denote this new edge-colored (but not vertex-colored) graph by G'.

Let G be a vertex – and edge-colored graph.

- (1) Attach a path of length  $n_c \in \mathbb{N}_0$  to every vertex colored c, where  $n_{c_1} \neq n_{c_2}$  for colors  $c_1 \neq c_2$  and then decolor the vertices of the graph.
- (2) We choose one of the edge-colors of G and let the edges in the paths all have this edge-color.

We denote this new edge-colored (but not vertex-colored) graph by G'.





#### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'. Then there exists a \*-isomorphism  $\varphi : C(Qut(G)) \to C(Qut(G'))$  such that  $\Delta_{G'} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_G$ .

#### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'. Then there exists a \*-isomorphism  $\varphi : C(Qut(G)) \to C(Qut(G'))$  such that  $\Delta_{G'} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_G$ .

### Idea of the proof

Denote by  $v_i$  the vertices in the added path to v, with  $d(v, v_i) = i$  (thus  $v = v_0$ )

### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) > 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'. Then there exists a \*-isomorphism  $\varphi: C(Qut(G)) \to C(Qut(G'))$  such that  $\Delta_{G'} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G}$ .

#### Idea of the proof

Denote by  $v_i$  the vertices in the added path to v, with  $d(v, v_i) = i$  (thus  $v = v_0$ )

- Show:
  - (1)  $u_{v_i w_i} = 0$  for  $i \neq j$ ,

  - (2)  $u_{v_i w_i} = u_{vw}$ , (3)  $u_{v_i w_i} = 0$  for  $c(v) \neq c(w)$ .

#### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) > 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'. Then there exists a \*-isomorphism  $\varphi: C(Qut(G)) \to C(Qut(G'))$  such that  $\Delta_{G'} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G}$ .

#### Idea of the proof

Denote by  $v_i$  the vertices in the added path to v, with  $d(v, v_i) = i$  (thus  $v = v_0$ )

- Show:
  - (1)  $u_{v_iw_i} = 0$  for  $i \neq j$ ,

  - (2)  $u_{v_i w_i} = u_{vw}$ , (3)  $u_{v_i w_i} = 0$  for  $c(v) \neq c(w)$ .
  - Use the following result: If  $\deg(v) \neq \deg(w)$ , then  $u_{vw} = 0$ .

Let G be a vertex – and edge-colored graph.

(1) Construct G' as before. We denote the color of the added edges in G' by  $c_0$ .

Let G be a vertex – and edge-colored graph.

- (1) Construct G' as before. We denote the color of the added edges in G' by  $c_0$ .
- (2) We subdivide each colored edge with  $c(e) \neq c_0$  and add a path of length  $m_c$  to the subdivision, where  $m_{c_1} \neq m_{c_2}$  for colors  $c_1 \neq c_2$ . Then decolor the edges in the graph G'.

We call this graph G''.

Let G be a vertex – and edge-colored graph.

- (1) Construct G' as before. We denote the color of the added edges in G' by  $c_0$ .
- (2) We subdivide each colored edge with  $c(e) \neq c_0$  and add a path of length  $m_c$  to the subdivision, where  $m_{c_1} \neq m_{c_2}$  for colors  $c_1 \neq c_2$ . Then decolor the edges in the graph G'.

We call this graph G''.





### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'' from G', where we choose  $c_0 = -1$ . Then there exists a \*-isomorphism  $\varphi : C(Qut(G')) \to C(Qut(G''))$  such that  $\Delta_{G''} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G'}$ .

### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'' from G', where we choose  $c_0 = -1$ . Then there exists a \*-isomorphism  $\varphi : C(Qut(G')) \to C(Qut(G''))$  such that  $\Delta_{G''} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G'}$ .

#### Idea of the proof

Denote by  $e_i$  the vertices in the added path to the subdivision  $e_0$  of e, with  $d(e,e_i)=i$ 

### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'' from G', where we choose  $c_0 = -1$ . Then there exists a \*-isomorphism  $\varphi : C(Qut(G')) \to C(Qut(G''))$  such that  $\Delta_{G''} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G'}$ .

#### Idea of the proof

Denote by  $e_i$  the vertices in the added path to the subdivision  $e_0$  of e, with  $d(e,e_i)=i$ 

- Show:
  - (1)  $u_{e_i f_i} = 0$  for  $i \neq j$  and  $u_{e_i v} = 0$
  - (2)  $u_{e_i f_i} = u_{vx} u_{wy} + u_{vy} u_{wx}$  for e = (v, x) and f = (w, y),
  - (3)  $u_{e_i f_i} = 0$  for  $c(e) \neq c(f)$ .

### Proposition (Roberson, S. 2021)

Let H be a connected graph with  $\deg(v) \geq 2$  for all  $v \in V(H)$ . Let  $G := G(M_H, 0)$  as before and construct G'' from G', where we choose  $c_0 = -1$ . Then there exists a \*-isomorphism  $\varphi : C(Qut(G')) \to C(Qut(G''))$  such that  $\Delta_{G''} \circ \varphi = (\varphi \otimes \varphi) \circ \Delta_{G'}$ .

#### Idea of the proof

Denote by  $e_i$  the vertices in the added path to the subdivision  $e_0$  of e, with  $d(e,e_i)=i$ 

- Show:
  - (1)  $u_{e_i f_i} = 0$  for  $i \neq j$  and  $u_{e_i v} = 0$
  - (2)  $u_{e_i f_i} = u_{vx} u_{wy} + u_{vy} u_{wx}$  for e = (v, x) and f = (w, y),
  - (3)  $u_{e_i f_i} = 0$  for  $c(e) \neq c(f)$ .
- Also need to show  $u'_{vx}u'_{wy}=u'_{wy}u'_{vx}$  for  $(v,w),(x,y)\in E(G'),$   $c(v,w)\neq c_0\neq c(x,y),$  where u' fundamental representation of Qut(G')

(1) Summarizing, we have  $C(Qut(G''(M_H,0))) \cong C^*(\Gamma(M_H,0))$  for all connected graphs H with  $\deg(v) \geq 2$  for all  $v \in V(H)$ .

- (1) Summarizing, we have  $C(Qut(G''(M_H,0))) \cong C^*(\Gamma(M_H,0))$  for all connected graphs H with  $\deg(v) \geq 2$  for all  $v \in V(H)$ .
- (2) Thus, we are left with finding H such that  $\Gamma(M_H,0)$  is non-abelian and finite
- (3) One can show that this is fulfilled for  $H = K_{3,4}$  (Paddock 2019)

- (1) Summarizing, we have  $C(Qut(G''(M_H,0))) \cong C^*(\Gamma(M_H,0))$  for all connected graphs H with  $\deg(v) \geq 2$  for all  $v \in V(H)$ .
- (2) Thus, we are left with finding H such that  $\Gamma(M_H,0)$  is non-abelian and finite
- (3) One can show that this is fulfilled for  $H = K_{3,4}$  (Paddock 2019)

#### Corollary (Roberson, S. 2021)

The graph  $G''(M_{K_{3,4}},0)$  has quantum symmetry and finite quantum automorphism group.

- (1) Summarizing, we have  $C(Qut(G''(M_H,0))) \cong C^*(\Gamma(M_H,0))$  for all connected graphs H with  $\deg(v) \geq 2$  for all  $v \in V(H)$ .
- (2) Thus, we are left with finding H such that  $\Gamma(M_H,0)$  is non-abelian and finite
- (3) One can show that this is fulfilled for  $H = K_{3,4}$  (Paddock 2019)

#### Corollary (Roberson, S. 2021)

The graph  $G''(M_{K_{3,4}},0)$  has quantum symmetry and finite quantum automorphism group.

## Thank you!

- (1) Summarizing, we have  $C(Qut(G''(M_H,0))) \cong C^*(\Gamma(M_H,0))$  for all connected graphs H with  $\deg(v) \geq 2$  for all  $v \in V(H)$ .
- (2) Thus, we are left with finding H such that  $\Gamma(M_H, 0)$  is non-abelian and finite
- (3) One can show that this is fulfilled for  $H = K_{3,4}$  (Paddock 2019)

#### Corollary (Roberson, S. 2021)

The graph  $G''(M_{K_{3,4}},0)$  has quantum symmetry and finite quantum automorphism group.

# Thank you!

David E. Roberson and Simon Schmidt. "Solution group representations as quantum symmetries of graphs" arXiv:2111.12362 (2021)