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Colored graphs

Consider a finite graph G = (V ,E) without multiple edges, i.e. V finite set and
E ⊆ V × V
A colored graph is a graph G along with a coloring function c : V ∪ E → S for some
set S.

Adjacency matrices AGc ∈ Mn({0, 1}), where (AGc )ij =
{

1 if (i , j) ∈ Ec

0 otherwise
A graph automorphism is a bijection σ : V → V such that (i , j) ∈ Ec if and only if
(σ(i), σ(j)) ∈ Ec , where additionally c(i) = c(σ(i)).
Automorphism group Aut(G) = {σ ∈ Sn |σAGc = AGcσ and σij = 0 if c(i) 6= c(j)}

Simon Schmidt (University of Copenhagen) Graph with finite quantum automorphism group February 7, 2022 2 / 13



Colored graphs

Consider a finite graph G = (V ,E) without multiple edges, i.e. V finite set and
E ⊆ V × V
A colored graph is a graph G along with a coloring function c : V ∪ E → S for some
set S.

Adjacency matrices AGc ∈ Mn({0, 1}), where (AGc )ij =
{

1 if (i , j) ∈ Ec

0 otherwise
A graph automorphism is a bijection σ : V → V such that (i , j) ∈ Ec if and only if
(σ(i), σ(j)) ∈ Ec , where additionally c(i) = c(σ(i)).
Automorphism group Aut(G) = {σ ∈ Sn |σAGc = AGcσ and σij = 0 if c(i) 6= c(j)}

Simon Schmidt (University of Copenhagen) Graph with finite quantum automorphism group February 7, 2022 2 / 13



Colored graphs

Consider a finite graph G = (V ,E) without multiple edges, i.e. V finite set and
E ⊆ V × V
A colored graph is a graph G along with a coloring function c : V ∪ E → S for some
set S.

Adjacency matrices AGc ∈ Mn({0, 1}), where (AGc )ij =
{

1 if (i , j) ∈ Ec

0 otherwise
A graph automorphism is a bijection σ : V → V such that (i , j) ∈ Ec if and only if
(σ(i), σ(j)) ∈ Ec , where additionally c(i) = c(σ(i)).
Automorphism group Aut(G) = {σ ∈ Sn |σAGc = AGcσ and σij = 0 if c(i) 6= c(j)}

Simon Schmidt (University of Copenhagen) Graph with finite quantum automorphism group February 7, 2022 2 / 13



The quantum symmetric group

Definition (Wang, 1998)
The quantum symmetric group S+

n = (C(S+
n ), u) is the compact matrix quantum group,

where

C(S+
n ) := C∗(uij , 1 ≤ i , j ≤ n | uij = u∗ij = u2

ij ,
∑

k

uik =
∑

k

uki = 1).

The C∗-algebra C(S+
n ) is commutative for n ≤ 3 and non-commutative for n ≥ 4

For n = 4, the C∗-algebra C(S+
4 ) is non-commutative because of the surjective

*-homomorphism

ϕ : C(S+
4 )→ C∗(p, q, 1 | p = p∗ = p2, q = q∗ = q2),

u 7→

 p 1− p 0 0
1− p p 0 0

0 0 q 1− q
0 0 1− q q

 .
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Quantum automorphism groups of colored graphs

Definition
Let G = (V ,E) be a colored graph. The quantum automorphism group Qut(G) is the
compact matrix quantum group (C(Qut(G)), u), where C(Qut(G)) is the universal
C∗-algebra with generators uij fulfilling

uij = u∗ij = u2
ij , i , j ∈ V (G)∑

k

uik =
∑

k

uki = 1, i ∈ V (G)

uij = 0, for all i , j ∈ V (G) with c(i) 6= c(j)
uAGc = AGc u for all edge colors c.

Here uAGc = AGc u is nothing but
∑

k uik (AGc )kj =
∑

k (AGc )ikukj .

For uncolored graphs, quantum automorphism groups were defined by Banica in
2005.
The graph G has no quantum symmetry if C(Qut(G)) is commutative, or
equivalently C(Qut(G)) = C(Aut(G)). Otherwise, the graph G does have quantum
symmetry.
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Linear constraint systems and their solution groups

Definition
Let M ∈ Fm×n

2 and b ∈ Fm
2 with b 6= 0. The solution group Γ(M, b) of the linear system

Mx = b is the group generated by elements xi for i ∈ [n] and an element J satisfying the
following relations:
(1) x2

i = 1 for all i ∈ [n];
(2) xixj = xjxi if there exists k ∈ [m] s.t. Mki = Mkj = 1;
(3)

∏
i :Mki =1 xi = Jbk for all k ∈ [m];

(4) J2 = 1;
(5) xiJ = Jxi for all i ∈ [n].

For b = 0: Γ = Γ(M, 0) is the homogeneous solution group of the system Mx = 0, where
we add the relation J = 1.

C∗(Γ) = C∗
(

xi | xi = x∗i , x2
i = 1,

∏
i :Mki =1

xi = 1, xixj = xjxi if Mki = Mkj = 1 for some k

)
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LCS from connected graphs

Let H be a connected graph with vertex set [m] and label the edges 1, . . . , n := |E(H)|.
Let MH ∈ Fm×n

2 be the matrix, where

(MH)ki =
{

1 if k ∈ V (H) is incident to i ∈ E(H);
0 o.w.

Example

Graph K3,4
Linear constraint system

x1 + x2 + x3 + x4 = 0, x1 + x5 + x9 = 0,
x5 + x6 + x7 + x8 = 0, x2 + x6 + x10 = 0,
x9 + x10 + x11 + x12 = 0, x3 + x7 + x11 = 0,

x4 + x8 + x12 = 0.
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A colored graph associated to the LCS

Let H be a connected graph, MH ∈ Fm×n
2 as before. Define the colored graph

G := G(MH , 0) as follows. Let Sk = {i ∈ [n]; (MH)ki = 1}.

(1) Vertices:
{

(k, α) : k ∈ [m], α : Sk → {±1},
∏

i∈Sk
αi = 1

}
. The color of a vertex

v = (k, α) is k.

(2) Edges:
I (k, α) and (k, β) are connected and the edge has color α∆β, where (α∆β)i = αiβi
I If k 6= l , then (k, α), (l , β) are connected if there exists i such that Mki = Mli = 1 and

furthermore αi 6= βi . The color of those edges is −1.

Example
For H = K3,4:

the graph has 3× 8 + 4× 4 = 40 vertices and seven vertex-colors,
edges between vertices associated to the same equation may have different colors,
edges between vertices associated to different equations always have color −1.
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Quantum automorphism group of the colored graph

Theorem (Roberson, S. 2021)
Let M ∈ Fm×n

2 . Set G = G(M, 0) and Γ = Γ(M, 0). Then there exists a ∗-isomorphism
ϕ : C∗(Γ)→ C(Qut(G)) such that ∆G ◦ ϕ = (ϕ⊗ ϕ) ◦∆Γ.

Idea of the proof
The uncolored version of G is one of the quantum isomorphic graphs G1, G2
constructed by Aterias et al.
The quantum isomorphism between G1 and G2 corresponds to a representation of
the solution group of Mx = b, b 6= 0 and J = −1.
One similarly gets a quantum automorphism of G1, here J = 1.
More concrete: We have u(k,α),(k,β) = p(k,α∆β), where p(k,δ) =

∏
i∈Sk

1
2 (1 + δixi ),

u(k,α),(l,β) = 0 for k 6= l
By coloring the graph in this specific way, we make sure that those are the only
quantum automorphisms of the graph
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Decoloring the vertices of G(M, 0)

Let G be a vertex – and edge-colored graph.
(1) Attach a path of length nc ∈ N0 to every vertex colored c, where nc1 6= nc2 for colors

c1 6= c2 and then decolor the vertices of the graph.

(2) We choose one of the edge-colors of G and let the edges in the paths all have this
edge-color.

We denote this new edge-colored (but not vertex-colored) graph by G ′.

G = G ′ =
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Decoloring the vertices of G(M, 0)

Proposition (Roberson, S. 2021)
Let H be a connected graph with deg(v) ≥ 2 for all v ∈ V (H). Let G := G(MH , 0) as
before and construct G ′. Then there exists a ∗-isomorphism
ϕ : C(Qut(G))→ C(Qut(G ′)) such that ∆G′ ◦ ϕ = (ϕ⊗ ϕ) ◦∆G .

Idea of the proof
Denote by vi the vertices in the added path to v , with d(v , vi ) = i (thus v = v0)

Show:
(1) uvi wj = 0 for i 6= j,
(2) uvi wi = uvw ,
(3) uvi wi = 0 for c(v) 6= c(w).

Use the following result: If deg(v) 6= deg(w), then uvw = 0.
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Decoloring the edges of G ′(M, 0)

Let G be a vertex – and edge-colored graph.
(1) Construct G ′ as before. We denote the color of the added edges in G ′ by c0.

(2) We subdivide each colored edge with c(e) 6= c0 and add a path of length mc to the
subdivision, where mc1 6= mc2 for colors c1 6= c2. Then decolor the edges in the
graph G ′.

We call this graph G ′′.

G ′ = G
′′

=
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Decoloring the edges of G ′(M, 0)

Proposition (Roberson, S. 2021)
Let H be a connected graph with deg(v) ≥ 2 for all v ∈ V (H). Let G := G(MH , 0) as
before and construct G ′′ from G ′, where we choose c0 = −1. Then there exists a
∗-isomorphism ϕ : C(Qut(G ′))→ C(Qut(G ′′)) such that ∆G′′ ◦ ϕ = (ϕ⊗ ϕ) ◦∆G′ .

Idea of the proof
Denote by ei the vertices in the added path to the subdivision e0 of e, with d(e, ei ) = i

Show:
(1) uei fj = 0 for i 6= j and uei v = 0
(2) uei fi = uvx uwy + uvy uwx for e = (v , x) and f = (w , y),
(3) uei fi = 0 for c(e) 6= c(f ).

Also need to show u′vx u′wy = u′wy u′vx for (v ,w), (x , y) ∈ E(G ′),
c(v ,w) 6= c0 6= c(x , y), where u′ fundamental representation of Qut(G ′)
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A graph with quantum symmetry and finite quantum automorphism group

(1) Summarizing, we have C(Qut(G ′′(MH , 0))) ∼= C∗(Γ(MH , 0)) for all connected
graphs H with deg(v) ≥ 2 for all v ∈ V (H).

(2) Thus, we are left with finding H such that Γ(MH , 0) is non-abelian and finite
(3) One can show that this is fulfilled for H = K3,4 (Paddock 2019)

Corollary (Roberson, S. 2021)
The graph G ′′(MK3,4 , 0) has quantum symmetry and finite quantum automorphism group.

Thank you!
David E. Roberson and Simon Schmidt. “Solution group representations as quantum
symmetries of graphs” arXiv:2111.12362 (2021)
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